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Abstract
The stochastic nonlinear Langevin equation theory of the single-particle dynamics of glassy
hard sphere fluids and suspensions has been applied to address several issues raised by recent
experimental and simulation studies. The theoretically predicted degree of non-Fickian
behaviour at intermediate times, and the slow structural relaxation component of the small
wavevector incoherent dynamic structure factor, are compared quantitatively with recent
measurements and reveal good agreement. A roughly power law growth, with a common
exponent, of the classic and alternative non-Gaussian parameter amplitudes with mean alpha
relaxation time is predicted, and qualitative similarities with a multi-point susceptibility that
quantifies dynamic heterogeneity effects are noted. The nonlinear rheology version of the
theory has been quantitatively applied to explain recent measurements of shear-induced
acceleration of the single-particle relaxation time on the local cage scale. The resulting no
adjustable parameter calculations are in remarkable agreement with the experimental
observations for the absolute magnitude, volume fraction dependence and fractional power law
scaling aspects of the shear thinning phenomenon.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The glassy dynamics of colloidal suspensions and dense fluids
composed of hard spheres is an intensely studied problem.
Ideal mode-coupling theory (MCT) is a microscopic, force-
based description that has made novel predictions based on
a literal arrest or ‘ideal glass transition’ singularity arising
from many particle caging [1, 2]. By adjusting the location of
the nonergodicity transition good agreement with experiments
and simulations for many ‘average’ properties of hard sphere
fluids has been documented [1–3]. However, MCT fails
to describe the multiple fluctuation or non-Gaussian aspects
corresponding to observables that are either exactly zero if
the dynamics is a Gaussian process or exhibit qualitative
deviations from Gaussian behaviour [4]. The reason is ideal
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MCT does not address activated transport over barriers, which
is probably a dominant factor for dynamically intermittent
and heterogeneous processes. Computer simulations based
on a variety of dynamical laws all find activated hopping
is important even below (above) the empirically deduced
MCT critical volume fraction (temperature) [5–15]. As
has been recently critically summarized [4], simulations and
confocal microscopy experiments have established that large
non-Gaussian dynamical effects occur in the putative glassy
precursor regime of hard-sphere-like systems.

Our goal has been to build on MCT to address barriers,
activated hopping and strongly non-Gaussian processes. A
microscopic and predictive theory for single-particle glassy
dynamics of hard sphere fluids and suspensions based on a
stochastic nonlinear Langevin equation (NLE) and with no
singularities below random close packing (RCP) has been
proposed by two of us [16]. The volume fraction dependence
of the mean relaxation time, viscosity and self-diffusion have
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been quasi-analytically computed and are in good agreement
with suspension experiments [16, 17]. The quasi-analytic
version of the theory has also been successfully generalized to
treat the nonlinear rheological response of glassy hard sphere
fluids [18, 19].

Non-Gaussian fluctuation effects have been recently
studied [4, 20, 21] for the quiescent fluid based on a Brownian
trajectory solution of our theory. A host of interrelated and
strong non-MCT fluctuation effects, of a purely dynamical
origin, are predicted due to the intermittent nature of particle
trajectories and the attendant broad distribution of relaxation
times. Relevant highlights include the following [20–22].
(i) Strong decoupling for volume fractions φ > 0.5 of the
self-diffusion constant, D, and single-particle alpha relaxation
time, τ ∗ = τ (q∗), as defined from the incoherent dynamic
structure factor, Fs(q, t), at the wavevector corresponding
to the peak of the static structure factor S(q). (ii) A
spatial scale dependence of the decoupling of diffusion and
relaxation characterized by a Fickian crossover length scale
ξD that increases linearly with volume fraction and is related
to the decoupling factor as ξD ∝ √

Dτ ∗. (iii) Dynamic
scaling is predicted for all volume fractions and wavevectors
(qσ ∼ 2.6–13) studied in the sense that the quantity X (q) ≡
τ (q)D/(τ (q)D)0 (where (τ (q)D)0 is the normal fluid value)
collapses as X � 1 + c(qξD)ν , where c is a constant
and ν � 1.7 ± 0.2, in agreement with simulation [23].
(iv) The amplitudes of two distinct non-Gaussian parameters
that quantify heterogeneous dynamics on the late β and final
α timescales, respectively, grow strongly with volume fraction.
(v) As the barrier increases the real space particle displacement
distribution function broadens from Gaussian in the normal
fluid regime to an increasingly bimodal form at intermediate
times and high volume fractions.

The above and other predictions compare favourably with
experiments and simulations. Hence, we have argued that the
rich single-particle mean and fluctuation dynamics of simple
fluids in the glassy precursor regime can both be understood
from the elementary process of cage escape and activated
hopping on the particle length scale [4, 20–22]. In the present
article we extend our theory for both quiescent and sheared
hard sphere fluids to address three areas of recent experimental
measurement: (1) Additional analysis of anomalous diffusion
and non-Gaussian effects. (2) Quantification of the
structural relaxation component of the decay of the incoherent
dynamic structure factor motivated by dynamic light scattering
measurements [24, 25]. Computational results for a subset of
the eleven volume fractions previously studied are presented
for these first two topics. (3) The acceleration of the mean
alpha relaxation time at ultrahigh volume fractions under
strong shear deformation and quantitative comparison with
a very recent experiment [26]. We first briefly review the
essential elements of the approach in the linear response
regime.

2. Theoretical background

Our theory has been heuristically motivated on physical
grounds [16], and derived from time-dependent statistical

mechanics [27]. It is built on a locally solid state,
or inhomogeneous fluid, picture of slow dynamics. For
suspensions, hydrodynamic interactions enter only as they
influence the short time/distance dissipative dynamics at
the one and two particle level. The interparticle force
contribution to the NLE is rendered tractable based on a local
equilibrium idea common to dynamic density functional theory
approaches [28]. This allows the instantaneous intermolecular
forces to be renormalized in an effective potential manner
via S(q). Temporal deviations from locally stable initial
positions are modelled in an Einstein solid spirit [27, 29].
Dynamic closure at the tagged particle level is achieved based
on an approximate relation between one and two particle
local dynamics. The resultant closed nonlinear stochastic
Langevin equation of motion for the instantaneous scalar
particle displacement from its initial position, r(t), is given in
the overdamped limit by [16, 27]

ζs
∂r(t)

∂ t
= −∂ Feff[r(t)]

∂r(t)
+ δ f (t), (1)

where the random force satisfies 〈δ f (0)δ f (t)〉 = 2kBT ζsδ(t),
and ζs = kBT/Ds is the short time friction constant.
The latter is accurately computed based on independent
binary collisions [30] as ζs = ζ0g(σ ), where for colloids
ζ0 = kBT D−1

0 is the dilute solution Stokes–Einstein friction
constant, σ is the hard sphere diameter, and an essentially exact
expression [17] for the contact value of the radial distribution
function, g(σ ), is employed. The effective or nonequilibrium
free energy is

Feff(r) = −3 ln(r) −
∫

d
q
(2π)3

ρC2(q)S(q)[1 + S(q)]−1

× exp

[
−q2r 2

6
(1 + S−1(q))

]
≡ Fideal + Fexcess, (2)

where C(q) = (1 − S(q))/ρ is the Fourier-transformed
direct correlation function calculated using Percus–Yevick
theory [31] and ρ is the number density. The nonequilibrium
free energy is a monotonically decreasing function of particle
displacement below φc = 0.432. A local minimum in Feff(r)

at r = rL first emerges at φc = 0.432 [16] which defines
a simplified (‘naive’ [29]) MCT nonergodicity transition. In
the NLE theory this ‘ideal glass transition’ signals the onset of
transient particle localization, emergence of an entropic barrier
of height FB and a crossover to activated dynamics [16]. The
barrier is ∼kBT at φ = 0.5, and grows to 6.7kBT at φ = 0.57.
Unless otherwise stated, all timescales are expressed in units
of τ0 = σ 2/D0.

Equations (1) and (2) are based on a solid-state-like
picture of a dense fluid and cannot be valid at arbitrarily long
times/displacements. A dynamical crossover to an irreversible
linear (three-dimensional) Langevin equation description is
invoked by modifying equation (1) as [20, 27]:

− ∂ Feff

∂r(t)
→ −ζhop(φ)

∂
r
∂ t

. (3)

A hopping friction constant is introduced to account for
the frictional resistance associated with the barrier crossing
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event. To quantitatively implement this idea a cage escape
displacement or ‘reaction point’, r †, is introduced that is a
priori computed based on a physically motivated criterion
for when the localizing cage force becomes irrelevant. All
sensible formulations of the reaction point idea have been
shown to yield very similar results, r †/σ � 0.5–0.6 [20].
The transition in dynamical description is executed on a
single-trajectory basis and assumes that after a reaction event
trajectory propagation is described by a unique ensemble
averaged friction constant, ζs → ζs + ζhop where

1

ζhop
= 1

N

N∑
i=1

1

ζhop,i
. (4)

The trajectory friction constant ζhop,i = 6t†
i /r†2

, t†
i is the

time for the i th trajectory to pass the reaction point, and the
number of trajectories N = 40 000. A ‘hopping diffusion
constant’ is defined as Dhop = kBT/ζhop, and the long time
diffusion constant is given by D = kBT/(ζs +ζhop). The recent
computational study [20, 21] has been performed for eleven
volume fractions in the interval 0.4 � φ � 0.57.

3. Anomalous diffusion and non-Gaussian effects

The mean square displacement (MSD), 〈r 2(t)〉, has been
previously studied [20]. The degree of anomalous non-
Fickian diffusion in the intermediate time caging regime
can be described via the minimum value of the effective
exponent �min(φ) in the apparent power law 〈r 2(t)〉 ∝ t�.
Our results are shown in figure 1 and have several notable
aspects. (i) The volume fraction dependence of �min can
be described as piecewise linear. (ii) For φ < 0.5 the
barrier is either nonexistent or less than the thermal energy
and �min(φ) weakly decreases with volume fraction. (iii) In
the φ > 0.5 activated dynamics regime the effective exponent
decreases much more rapidly. If the high volume fraction linear
behaviour is empirically extrapolated one finds �min → 0
at φ ∼ 0.575. This value agrees well with analyses based
on fitting ideal MCT to experimental data by adjusting the
location of the ideal glass singularity [3, 24], although the
exponent is always nonzero below RCP in our approach. The
corresponding dynamic light scattering data [25] for �min(φ)

are also shown in figure 1. The measurements were made
using a binary mixture formulation and polydisperse colloids
of mean diameter ∼400 nm. The observed effective exponent
behaviour is in rather remarkable agreement with the no
adjustable parameter theoretical results.

The inset of figure 1 shows theoretical results for
several characteristic displacements as a function of volume
fraction [20, 21]: (a) root MSD corresponding to the
minimum non-Fickian exponent, Rm, (b) root MSD at the
time when the classic non-Gaussian parameter (NGP) [31],
α2(t) ≡ (3〈r 4(t)〉/5〈r 2(t)〉2) − 1, is a maximum, (c) root
MSD at the alpha relaxation time τ ∗, and (d) location of
the maximum of the peak of the fast subpopulation in the
displacement distribution function at the alpha relaxation
time [21], P(r, t) ∝ r 3Gs(r, t) where Gs(r, t) is the standard
van Hove distribution function. The first two length scales

Figure 1. Minimum non-Fickian exponent, �min, characterizing the
subdiffusive plateau: 〈r 2〉 ∼ t�min . The NLE theory results (blue
circles) with two linear fits (blue solid lines): �min

∼= −1.8φ + 1.5
(low φ), �min

∼= −6.8φ + 4.0 (high φ). Dynamic light scattering
results [30] (green squares) with two linear fits (green dashed lines):
�min

∼= −3.2φ + 2.1 (low φ), �min
∼= −8.2φ + 4.7 (high φ). Inset

shows characteristic displacements with respect to volume fraction:
root mean square displacement at subdiffusive plateau, Rm (blue
circles); root mean square displacement at time of maximum
non-Gaussian parameter (orange diamonds); root mean square
displacement at alpha relaxation time (green triangles); location of
fast peak of displacement distribution at alpha relaxation time (red
squares).

are associated with dynamics on the fast beta (transient
localized) regime. They decrease with volume fraction, and
vary much more rapidly once a significant barrier emerges.
The other two lengths quantify displacements on the alpha
relaxation timescale and increase with volume fraction. This
is the origin of our predicted decoupling of relaxation and
diffusion [20, 21], i.e. an increase of Dτ ∗ with φ.

The root mean square displacement corresponding to the
subdiffusive plateau, Rm, decreases by a bit more than a
factor of two as the volume fraction increases over the wide
range of 0.40–0.57 (figure 1 inset). We are aware of two
experimental studies of this property for hard sphere colloids.
The measurements of van Megen and co-workers [25] find
Rm/σ decreases from roughly 0.23 to 0.17 as φ increases
from 0.50 to 0.56. These values are larger than the theoretical
results. The experiments also find Rm tends to saturate at
very high volume fractions, in contrast to our calculations. On
the other hand, the experiments of Weeks and Weitz [32] find
Rm/σ varies from ∼0.16 to 0.046 as φ increases from 0.46
to 0.56, in surprisingly good agreement with our calculations.
Moreover, the studies of [32] find Rm is a monotonically
decreasing function of volume fraction up to, and beyond,
φ = 0.56, a trend that differs from the experiments of [25]
but which is in agreement with our theoretical predictions.

Two scalar measures of non-Gaussian dynamics on the late
beta and alpha relaxation timescales are the classic NGP and
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Figure 2. Maximum amplitude of the non-Gaussian parameter α2,max

(blue squares) and alternate non-Gaussian parameter γmax (red
circles) as a function of alpha relaxation time with power law fits:
α2,max ∼ (τ ∗)0.57 (blue solid line); γmax ∼ (τ ∗)0.55 (red dashed line).
Inset shows characteristic displacements as a function of the alpha
relaxation time (points) and power law fits r ∼ (τ ∗)γ (lines): root
mean square displacement at the time of maximum NGP (orange
diamonds; γ = −0.21); root mean square displacement at the alpha
relaxation time (green triangles; γ = 0.13); location of fast peak of
displacement distribution at alpha relaxation time (red squares;
γ = 0.11).

alternative NGP [33], defined as γ (t) ≡ (〈1/3r 2(t)〉〈r 2(t)〉) −
1, respectively. We previously established the magnitude and
timescale of the peaks of these different measures of non-
Gaussian dynamics as a function of volume fraction [21].
Recently, several simulation studies of four-point dynamical
susceptibilities have been performed to characterize the space–
time mobility fluctuations. For a binary thermal atomic mixture
at intermediate temperatures the amplitude of the four-point
susceptibility in the small wavevector limit, χ4(t), scales
as an apparent power law with the alpha relaxation time,
χ4,max ∝ (τ ∗)0.46, a relation reminiscent of dynamic critical
phenomena [34]. We are motivated to analyse the dependence
of the amplitudes α2,max and γmax on τ ∗ by this finding, as well
as our previous discovery [21] of a deep connection between
the amplitudes of these two non-Gaussian parameters and the
similar shapes of the alternate NGP and χ4(t). Both the
susceptibility [34] and alternate non-Gaussian parameter [21]
are asymmetric functions with short time tails and abrupt long
time decays, and both peak at roughly the alpha time, which
suggests they may reflect similar physics.

Figure 2 presents our results. For small enough τ ∗ and
volume fractions at which the barrier is nonexistent or less than
kBT there is no simple power law dependence. However, as
the strongly activated regime is entered both NGP amplitudes
follow apparent power laws over roughly 1.5 decades with
exponents that are almost the same and slightly larger than
0.5. For the classic NGP there appears to be a bending over to

a weaker dependence at the longest relaxation times (highest
barriers), a trend also seen in simulations of χ4(t) at the
lowest accessible temperatures [34]. Of course, our limited
range of data precludes definitive statements, but we find the
similarities between the NGP parameters’ amplitude growth
and the behaviour of χ4,max to be interesting.

The inset of figure 2 shows three of the characteristic
displacements in figure 1 vary with the alpha relaxation time
as effective power laws with small apparent exponents. The
two growing length scales behave essentially identically to
the Fickian crossover length mentioned above which is ξD ∝√

Dτ ∗ ∝ (τ ∗)0.115 in the strongly activated regime [21]. The
growth of the MSD at the alpha time as a weak power law
of τ ∗ is also consistent with recent simulations [33, 35]. The
behaviour of the displacement at the maximum of the classic
NGP is especially striking since power law scaling applies
over a three orders of magnitude increase of τ ∗ that covers
the ‘normal’ fluid regime (where the barrier is zero) and the
strongly activated regime. This prediction should be amenable
to testing via experiment and computer simulation.

4. Structural relaxation and non-Markovian slow
dynamics

Incoherent dynamic structure factor measurements [3] for
glassy colloidal suspensions performed at a single wavevector
of qσ = 2.6 have recently been further analysed [25]. A
primary goal was to separate the decay of Fs(q, t) into a
‘fast’ Markovian process and a slower non-Markovian process
indicative of structural relaxation. The simplest analysis
writes [25]:

Fs(q, t) ≡ T (q, t) + N(q, t), (5)

where T is the ‘thermal mode’ given by the Fickian form
T (q, t) = exp(−q2Dst). The short time diffusion constant,
Ds, has been experimentally measured [3, 25] and is well
described [17, 30] by Ds = D0/g(σ ) as employed in our
theory. Hence, N(q, t) represents the slow part of the decay
associated with the alpha relaxation process. High volume
fraction results for N(qσ = 2.6, t) are shown in figure 4
of [25] for φ = 0.409, 0.517 and 0.551. Peaks of amplitude
∼0.33, 0.8, and 0.95 occur with increasing volume fraction,
and the corresponding timescale grows by roughly an order of
magnitude.

These experimental results have motivated us to analyse
our prior calculations [20, 21] of Fs(q, t) using equation (5).
Figure 3 shows N(q, t) at φ = 0.55 for q = 2.6/σ , q∗,
the second peak of the static structure factor q2, and two
wavevectors, qa and qb, that are equidistant [20, 21] between
q∗ and q = 2.6/σ . Time is nondimensionalized by the
Brownian time τB ≡ τ0/24, as in [25], and the lowest
wavevector is the experimental one. The amplitude of N(q, t)
for the lowest wavevector is similar to (a bit smaller than)
the experimental observations. As wavevector increases the
N(q, t) peak shifts to shorter timescales as expected, but the
amplitude is nearly constant.

Figure 4(a) presents calculations over a wide range of
volume fractions for the relatively low wavevector studied
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Figure 3. Long time component of the incoherent dynamic structure
factor, N(q, t), for φ = 0.55 and wavevectors defined in the text
(from right): q = 2.6/σ , qa , qb, q∗, q2.

experimentally [3, 25]. The functions have an amplitude that
increases with volume fraction in a manner quite similar to the
experimental observations. Figure 4(b) shows the analogous
results for the cage scale q∗. The magnitude and volume
fraction dependence of the amplitudes, and the shift of the peak
time with volume fraction, are all qualitatively the same as in
figure 4(a). Of course, the absolute timescales are shorter, and
at the highest volume fraction the shape of N(q∗, t) becomes
more skewed at long times.

Figure 5 presents various characteristic times, in units of
the Brownian time, as a function of volume fraction. The time
of the peak of N(qσ = 2.6, t) is nearly constant at lower
volume fractions and then increases as the dynamics becomes
activated. The analogous experimental data are shown as large
(indicating the apparent data scatter [25]) circles. Reasonable
agreement with theory is found with regards to the absolute
magnitude of the timescale and its volume fraction dependence
except at the lowest volume fractions where the dynamics
in the theory is not activated. In the activated regime the
theoretical results are well represented as exponential, varying
as ∼ exp(26.9φ). Curiously, this exponential law, including
the numerical factor of ∼27, is essentially identical to prior
calculations of the glassy shear modulus [36], a property
determined by the most localized aspects of the problem.
This is another example of connections between dynamical
properties on different time and length scales that emerge from
the NLE theory [16, 20, 21]. A physical and mathematical
understanding of this aspect has been recently developed [37].
Figure 5 also shows that the timescale of the maximum
N(q = q∗, t) has the same volume fraction dependence as the
timescale of N(qσ = 2.6, t), and the peak time of the classic
NGP behaves similarly over a restricted range. The timescale
of maximum anomalous diffusion is also shown and exhibits a

Figure 4. Long time component of the incoherent dynamic structure
factor, N(q, t), for (a) q = 2.6/σ and (b) q = q∗ at (from bottom):
φ = 0.43, 0.465, 0.5, 0.53, 0.55.

somewhat weaker growth with volume fraction in the activated
regime than the other timescales.

Although there are quantitative differences between theory
and experiment for N(qσ = 2.6, t), overall the level of
agreement seems significant especially since there are no
adjustable or fitting parameters in the NLE approach. Future
experiments would be valuable to test our results for the q-
dependence of N(q, t).

5. Shear thinning of the alpha relaxation time

The NLE theory has been generalized to treat the effect of
applied stress based on a generalized Eyring-like idea [18].
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Figure 5. Characteristic timescales in units of the Brownian time.
Time of the maximum of N(q, t) for q = 2.6/σ (red circles), q∗
(orange triangles); analogous dynamic light scattering results [30] for
q = 2.6/σ (open circles). Time of the maximum non-Gaussian
parameter (green diamonds), and maximum non-Fickian behaviour
(blue squares). Lines associated with the various points denote an
exponential behaviour ∼ exp(26.9φ).

Specifically, in the presence of a constant stress field, τ , the
instantaneous displacement of a particle results in mechanical
work which reduces the barrier and accelerates motion. This
picture is also qualitatively in the spirit of phenomenological
single-particle ‘soft glassy rheology’ trap models [38] where
local strain is envisioned to induce a relative displacement of a
particle from the centre of its cage formed by the surrounding
particles [39]. Stress contributes a constant scalar force to the
NLE of equation (1), or equivalently a linear in displacement
contribution to the nonequilibrium free energy

Feff(r; τ ) = Feff(r; τ = 0) − f r

f = τσ 2φ−2/3,
(6)

where the microscopic force, f , is related to the macroscopic
stress via the average number of particles in a unit cross-
sectional area [18]. The common assumptions that the
macroscopic deformation is transmitted to the particle level,
and stress-induced structural and dynamical anisotropy on
the local scale can be ignored, are adopted. The latter is
supported by simulations of model glasses [40] and colloidal
suspensions [41] which find massive shear thinning can occur
with virtually no detectable anisotropy of local structure or
dynamics, i.e. the system remains ‘effectively isotropic’ on the
cage scale.

Within the quasi-analytic framework of the NLE theory
the single-particle alpha relaxation time, τα , is identified with
the mean first passage time over the barrier as computed from

the high friction limit of Kramers’ theory [16, 42]:

τα

τ0
= 2π(ζs/ζ0)√

K̃0 K̃B

eFB , (7)

where K̃0 and K̃B are the dimensionless (units of kBT σ−2)
absolute magnitudes of the curvature of the localization well
and barrier, respectively, of Feff(r). Applied stress distorts the
effective free energy by changing the curvatures and reducing
the barrier height thereby increasing the hopping rate [18].
The short time friction constant is assumed to reflect ultralocal
dynamics and is taken to be independent of stress.

Equation (7) allows the alpha time as a function of stress to
be computed. However, if shear rate is the control variable then
a relation between stress, viscosity and shear rate (constitutive
equation) is required as discussed in depth previously [18].
Since our present interest is experiments at extremely high
volume fractions [26], a simple (but accurate [18]) Maxwell
model for the shear viscosity is adopted

η � G ′(τ )τα(τ ) (8)

G ′(τ ) = 1

60π2

∫ ∞

0
dq q4

(
d ln S(q)

dq

)2

× exp[−q2r 2
L(τ )/3S(q)]. (9)

The glassy shear modulus, G ′, follows from the standard
Green–Kubo formula plus the MCT projection and factoriza-
tion approximations [1, 36]. Stress enters solely in G ′ via the
localization length rL(τ ) (minimum of Feff(r)) which mono-
tonically increases with deformation corresponding to strain
softening [18]. The shear rate, γ̇ , then follows from the vis-
cous relation τ = η(τ)γ̇ , thereby allowing the calculation of
τα(γ̇ ).

Very recently, first of their kind measurements of the
incoherent dynamic structure factor of hard sphere colloidal
suspensions (σ = 1.7 μm) under high shear at the cage
peak, Fs(q∗, t), have been performed at an ultrahigh volume
fraction of φ = 0.62 [26]. The elementary timescale is
τ0 ≡ σ 2/D0 = 24τB = 30 s. A wide range of shear rates
were studied corresponding to dimensionless Peclet numbers
in the range Pe ≡ γ̇ τ0 = 0.005–1.0. The key experimental
findings relevant to our present work are the following.
(1) Fs(q∗, t) decays as a simple exponential function of time.
(2) As seen in many simulations [40, 41], Fs(q∗, t) and the
self-diffusion constant, D, show little anisotropy (<20%)

despite the observation of massive shear thinning. (3) Within
experimental uncertainties the alpha time is a perfect power
law of shear rate: τα ∝ γ̇ −0.8, and also D ∝ τ−1

α ∝ γ̇ 0.8.
(4) At the lowest Pe = 0.005 the alpha relaxation time
is ∼1000 s. (5) One measurement each was performed at
φ = 0.60 and 0.61. Surprisingly, to within the experimental
error bars these alpha times fell on top of the curve for the
φ = 0.62 system. (6) The experiments imply the microscopic
flow curve, commonly defined as τ ≈ ηγ̇ ∝ G ′ταγ̇ ∝ γ̇ 0.2,
is of a ‘power law fluid’ form with no low shear rate plateau.
On the other hand, bulk rheological experiments do find a low
shear rate plateau which is commonly interpreted as a dynamic
yield stress [26]. Hence, the macroscopic and microscopic

6
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Figure 6. Dimensionless mean alpha relaxation time as a function of
dimensionless stress for three volume fractions (from top) φ = 0.62,
0.61, 0.60. The inset shows the corresponding entropic barrier in
units of the thermal energy.

behaviour are not consistent, which may indicate the apparent
stress plateau arises from a macroscopic rheological instability
such as shear banding and localization [43, 44].

The experiment of [26] provides a unique opportunity to
directly and quantitatively test the nonlinear version of the
single-particle NLE theory in the absence of adjustable fit
parameters. New calculations of the alpha time as a function of
dimensionless stress (units of kBT σ−3) have been performed
for φ = 0.60, 0.61 and 0.62 and the results are presented
in figure 6. In units of τ0 ≡ σ 2/D0 = 24τB, the reduced
alpha time at zero stress varies by roughly two orders of
magnitude from ∼20 000 to two million over this small volume
fraction range. At φ = 0.62 the quiescent alpha time is
predicted to be astronomical, τα ∼ 60 million seconds ∼
2 years. At a dimensionless stress of order unity the relaxation
time starts to decrease significantly, falling by roughly four
orders of magnitude at a stress of ∼50. At high stress the
differences between the alpha relaxation time for the three
volume fractions becomes much smaller due to the barrier
softening effect as displayed in the inset of figure 6.

Using equations (8) and (9) and τ = η(τ)γ̇ the
calculations in figure 6 are expressed as a function of
dimensionless shear rate (Peclet number) and re-plotted
in figure 7. These represent quantitative, no adjustable
parameter predictions that can be directly compared with the
experimental data. At φ = 0.62 shear thinning begins at an
exceptionally low Peclet number of ∼10−9. For each volume
fraction, once the relaxation time has decreased by roughly
an order of magnitude a power law shear thinning behaviour
emerges over many decades in Peclet number. As the shear
rate increases the relaxation times that were initially separated
by a factor of 100 closely approach each other. If the shear
rate range corresponding to Pe = 0.0001–1 is analysed (not
plotted), then essentially perfect power law behaviour is found:
τα ∝ γ̇ −x with x = 0.81, 0.79 and 0.75 for φ = 0.62, 0.61
and 0.60, respectively.
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Figure 7. Log–log plot of the dimensionless mean alpha relaxation
time as a function of dimensionless shear rate (Peclet number) for
(from top) φ = 0.62, 0.61, 0.60. Inset: expanded view of the Peclet
number range relevant to recent experiments with the time axis in
seconds [31]. The lines through the points are power laws τα ∝ γ̇ −x

where x = 0.81, 0.79, 0.77 for φ = 0.62, 0.61, 0.60.

The inset of figure 7 plots our calculations over precisely
the same range as experimentally studied. Essentially perfect
power laws emerge with τα ∝ γ̇ −0.81 for φ = 0.62, in
accord with the experiment [26]. Over this shear rate range
the apparent exponent x = 0.79 and 0.77 for φ = 0.61
and 0.60, respectively. This remarkable agreement between
theory and experiment extends to the absolute values of the
mean relaxation time. Since τ0 = 30 s, the predicted alpha
relaxation time at Pe = 0.005 is ∼800–1500 s for φ =
0.60–0.62. For φ = 0.62 this time is almost 5 orders of
magnitude smaller than its quiescent value, and is in excellent
agreement with the experimental observation of ∼1000 s at
Pe = 0.005 [26] Finally, the theory predicts that at the
Peclet numbers experimentally probed the alpha time for the
three volume fractions systems are within less than a factor
of two of each other. This provides an understanding of the
puzzling nearly identical behaviour observed experimentally
for measurements at φ = 0.60, 0.61,0.62.

The level of excellent quantitative agreement between
theory and experiment described above is not a priori expected.
However, we believe it is very significant especially given
there are no adjustable parameters in the comparison. In
conjunction with multiple prior confrontations of the nonlinear
rheological theory with experiment [18, 19], we believe there is
strong support for the fundamental ideas of the NLE approach
which include the relevance of entropic barriers and activated
hopping [16, 27], the nonexistence of an ideal glass transition
below RCP [37], and the proposed instantaneous Eyring-like
mechanism of stress reduction of the barrier [18].

Alternative microscopic theories of the nonlinear rheology
of glassy colloidal suspensions have been recently developed
based on ideal MCT and the concept of shear-induced
advection of density fluctuations that destroy dynamic caging
constraints [45, 46]. These approaches have also had
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successes. However, they are built on the nonergodic
ideal glass concept (the location of which is adjusted to
fit experimental data) that emerges far below RCP, and the
assumed practical irrelevance of activated barrier hopping. The
ideal MCT approaches predict the existence of a dynamic
yield stress, in contrast to the NLE theory where ergodicity
is always (in principle) restored at low enough shear rates
via rare activated barrier hopping. The experiments of [26]
find that the presence of a stress plateau in the bulk rheology
experiment is not reflected in the microscopic dynamics that
both MCT and the NLE theory address. Clearly more
experimental work is needed to better test the various theories,
and the thorny issue of macroscopic instabilities as the possible
origin of yield stress plateaus must be resolved. Regardless,
direct measurements of Fs(q, t) or S(q, t) under nonlinear
flow conditions are the most definitive and appropriate tests
of existing microscopic theories and hence much future
experimental and simulation effort should be expended in this
direction.

6. Discussion

The stochastic nonlinear Langevin equation theory of
glassy single-particle dynamics of hard sphere fluids and
suspensions [16, 27] has been applied to address three
issues. The extent of non-Fickian (subdiffusive) behaviour
at intermediate times is compared to analogous results of
light scattering experiments [3, 25] with good quantitative
agreement. The slow structural relaxation component of
the small wavevector incoherent dynamic structure factor
is calculated and overall is found to agree well with light
scattering results [3, 25], although quantitative deviations
do exist. The theoretical timescale for maximizing the
contribution of the structural relaxation is quite similar
in magnitude and volume fraction dependence to the
experimental result. Various measures of non-Gaussian
fluctuation effects [4, 21] have also been further analysed,
including the interesting roughly power law growth, with a
common exponent, of the classic and alternative non-Gaussian
parameter amplitude with mean alpha relaxation time. Weak
power law growth or shrinkage of several characteristic length
scales are also predicted in the activated dynamics regime.

The quasi-analytic nonlinear rheology version of the
theory [18] has been quantitatively applied to address recent
measurements [26] of shear-induced acceleration of the single-
particle relaxation time on the local cage scale. The no
adjustable parameter calculations are in remarkable agreement
with the experimental observations for both the absolute
magnitude and power law dependence of the shear thinning
phenomenon. The theory of both the linear and nonlinear bulk
viscoelastic properties is based on single-particle dynamics,
a simplified idea that underlies the emergent field of
‘microrheology’ [47]. Recent theoretical and simulation
studies suggest such an approach compares remarkably well
with traditional macrorheology under both quiescent and
driven conditions even when the tagged particle is identical in
size to the matrix particles [48]. This close correspondence

between microrheology and bulk rheology provides additional
support for our theoretical approach [18].

The NLE theory predicts bifurcation of the single-particle
displacement distribution [21]. A full analysis of results
for the van Hove function, including the exponential tail
feature that is indicative of a fast hopping species, will be
presented elsewhere [22]. Confrontation of the nonlinear
rheology theory with experiments on dense attractive glass or
gel colloidal systems is also a problem of significant interest.
New experiments that measure single-particle dynamics in
such gels under high stress would be exceptionally valuable
to test emerging theoretical ideas.
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